II B.Tech - I Semester - Regular/Supplementary Examinations November - 2019

SIGNALS AND SYSTEMS
 (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks
$11 \times 2=22 \mathrm{M}$
1.
a) Draw the graphical form of sinc signal $\operatorname{sinc}(\mathrm{t})$.
b) Compare Even and Odd signals.
c) Write the mathematical form of frequency convolution property of Fourier Transform.
d) Sketch the spectrum of a signal $x(t)=\delta(t)$.
e) What type of system is described by a differential equation.
f) What is the relationship between Z-transform and DTFT.
g) Denote the Fourier Transform of $x(-t)$ if the Fourier Transform of $\mathrm{x}(\mathrm{t})$ is $\mathrm{X}(\mathrm{j} \omega)$.
h) Determine the time domain representation of a function $x(s)=\frac{1}{s^{2}}, \operatorname{Re}(s)>0$
i) Write the mathematical form of final value theorem of Laplace Transform.
j) What is the ROC of Z-transform of $x(n)=u(n)$?
k) Sketch aliasing effect with necessary expression.

PART - B

Answer any THREE questions. All questions carry equal marks. $3 \times 16=48 \mathrm{M}$
2. a) Test the causal system $y(t)=T\{x(t)\}=2 x(t)+3$ for Linearity, Time invariance and Stabilty.

8 M
b) Describe and sketch the concept of convolution of the following signals. $x(t)=e^{-3 t} u(t)$ and $h(t)=t e^{-3 t} u(t)$.
3. a) Compare exponential Fourier series with trigonometric Fourier series.
b) Find the Fourier Transform of a rectangular function of height A and width T i.e. $x(t)=A . \operatorname{rect}(t / T)$.
4. a) State and prove any four properties of Laplace Transform.
b) Compute all possible time domain signals corresponds to $X(s)=\frac{s}{(s+1)(s+2)(s+3)}$.
5. a) Prove time shifting property and frequency shifting property of DTFT.
b) Given $x(n)$. Find its DTFS and draw magnitude and phase spectrum.

6. a) Find the z-transform and its ROC of

$$
\mathrm{x}(\mathrm{n})=\mathrm{a}^{\mathrm{n}} \sin \left(\omega_{0} \mathrm{n}\right) \mathrm{u}(\mathrm{n}) \quad 8 \mathrm{M}
$$

b) State and Prove Sampling Theorem for Band limited
signals. 8 M

