Code: EC3T3

II B.Tech - I Semester – Regular/Supplementary Examinations November - 2019

SIGNALS AND SYSTEMS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART – A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) Draw the graphical form of sinc signal sinc(t).
- b) Compare Even and Odd signals.
- c) Write the mathematical form of frequency convolution property of Fourier Transform.
- d) Sketch the spectrum of a signal $x(t)=\delta(t)$.
- e) What type of system is described by a differential equation.
- f) What is the relationship between Z-transform and DTFT.
- g) Denote the Fourier Transform of x(-t) if the Fourier Transform of x(t) is X(jω).
- h) Determine the time domain representation of a function $x(s) = \frac{1}{s^2}$, Re(s)>0
- i) Write the mathematical form of final value theorem of Laplace Transform.
- j) What is the ROC of Z-transform of x(n)=u(n)?
- k) Sketch aliasing effect with necessary expression.

PART – B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- 2. a) Test the causal system $y(t)=T{x(t)}=2 x(t)+3$ for Linearity, Time invariance and Stabilty. 8 M
 - b) Describe and sketch the concept of convolution of the following signals. $x(t) = e^{-3t} u(t)$ and $h(t) = t e^{-3t} u(t)$. 8 M
- 3. a) Compare exponential Fourier series with trigonometric Fourier series. 6 M
 - b) Find the Fourier Transform of a rectangular function of height A and width T i.e. x(t)=A.rect(t/T). 10 M
- 4. a) State and prove any four properties of Laplace Transform. 8 M
 - b) Compute all possible time domain signals corresponds to $X(s) = \frac{s}{(s+1)(s+2)(s+3)}$. 8 M
- 5. a) Prove time shifting property and frequency shifting property of DTFT.8 M

b) Given x(n). Find its DTFS and draw magnitude and phase spectrum.
8 M

b) State and Prove Sampling Theorem for Band limited signals.8 M